Question 1 of 58

Graph the equation.

\[y = 4 |x| \]
Question 2 of 58
Graph the parabola.

\[y = -3x^2 \]

Question 3 of 58
Graph

\[y = \frac{3}{2} x^3 \]
Question 4 of 58

The function f is defined as follows.

$$f(x) = \sqrt[3]{x - 1}$$

Find $f(-7)$ and $f(126)$.

$$f(-7) = \boxed{}$$

$$f(126) = \boxed{}$$

Question 5 of 58

Graph the equation.

$$y = 2|x - 3| + 2$$
Question 6 of 58

Graph the parabola.

\[y = (x - 4)^2 + 1 \]

Question 7 of 58

Graph the function \(f(x) = \sqrt{x + 1} \).
Question 8 of 58

Graph the function \(f(x) = \sqrt{x+2} + 1 \).

Question 9 of 58

Graph the following function.

\[f(x) = \frac{3}{\sqrt{x-5}} \]
For each graph, choose the function that best describes it.

(a) $f(x) = 1$
(b) $f(x) = \frac{1}{x}$
(c) $f(x) = x^2$
(d) $f(x) = x^3$
Question 11 of 58

Look at the graphs and their equations below. Then fill in the information about the coefficients A, B, C, and D.

\[
\begin{array}{cccc}
\text{Graph} & A & B & C \\
\text{y} = A \mid x & \text{ } & \text{ } & \text{ } \\
\text{y} = B \mid x & \text{ } & \text{ } & \text{ } \\
\text{y} = C \mid x & \text{ } & \text{ } & \text{ } \\
\text{y} = D \mid x & \text{ } & \text{ } & \text{ } \\
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) For each coefficient, choose whether it is positive or negative.</td>
<td>Positive, Negative</td>
<td>Positive, Negative</td>
<td>Positive, Negative</td>
<td>Positive, Negative</td>
</tr>
<tr>
<td>(b) Choose the coefficient closest to 0.</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
</tr>
<tr>
<td>(c) Choose the coefficient with the greatest value.</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
</tr>
</tbody>
</table>

Question 12 of 58

Translate each graph as specified below.

(a) The graph of $y = x^2$ is shown. Translate it to get the graph of $y = (x - 2)^2$.

(b) The graph of $y = x^2$ is shown. Translate it to get the graph of $y = x^2 + 5$.

Part (a)

\[
\begin{array}{c}
(0, 0)
\end{array}
\]

Part (b)

\[
\begin{array}{c}
(0, 0)
\end{array}
\]
Question 13 of 58

Below is the graph of $y = x^2$.

Translate it to make it the graph of $y = (x + 4)^2 - 1$.

![Graph of $y = x^2$](image)

![Graph of $y = (x + 4)^2 - 1$](image)

Question 14 of 58

Translate each graph as specified below.

(a) The graph of $y = |x|$ is shown. Translate it to get the graph of $y = |x - 1|$.

(b) The graph of $y = |x|$ is shown. Translate it to get the graph of $y = |x| + 4$.

![Graph of $y = |x|$](image)

![Graph of $y = |x - 1|$](image)

![Graph of $y = |x| + 4$](image)
Question 15 of 58

Below is the graph of $y = |x|$. Translate it to make it the graph of $y = |x - 2| - 5$.

![Graph of $y = |x|$ translated to $y = |x - 2| - 5$.]

Question 16 of 58

If the graph of the function g defined by

$$g(x) = 5x^2 - 9$$

is translated vertically upward by 5 units, it becomes the graph of a function f.

Find the expression for $f(x)$.

Question 17 of 58
Translate each graph as specified below.

(a) The graph of \(y = f(x) \) is shown. Translate it to get the graph of \(y = f(x + 2) \).
(b) The graph of \(y = g(x) \) is shown. Translate it to get the graph of \(y = g(x) + 4 \).

Question 18 of 58
Below is the graph of \(y = x^3 \).
Translate it to make it the graph of \(y = (x + 3)^3 - 2 \).
Question 19 of 58

Transform each graph as specified below.

The graph of $y = f(x)$ is shown. Graph $y = f(2x)$.

The graph of $y = g(x)$ is shown. Graph $y = \frac{1}{2} g(x)$.
Question 20 of 58

Complete the following.

The graph of \(y = h(x) \) is shown. Draw the graph of \(y = -h(x + 4) \).

The graph of \(y = g(x) \) is shown. Draw the graph of \(y = g(2x) - 1 \).
Question 21 of 58

Below is the graph of $y = x^3$.
Transform it to make it the graph of $y = 2(x - 4)^3 + 3$.

Question 22 of 58

The graph of f (in blue) is translated a whole number of units horizontally and vertically to obtain the graph of g (in red).

The function f is defined by $f(x) = x^2$.
Write down the expression for $g(x)$.

\[
g(x) = \underline{\text{ }}
\]
Question 23 of 58

For each graph, select all symmetries that apply.

<table>
<thead>
<tr>
<th>Symmetry:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ x-axis</td>
</tr>
<tr>
<td>□ y-axis</td>
</tr>
<tr>
<td>□ origin</td>
</tr>
<tr>
<td>□ none of these</td>
</tr>
</tbody>
</table>

(a) [Graph Image]

(b) [Graph Image]

(c) [Graph Image]

Question 24 of 58

For each equation, determine whether its graph is symmetric with respect to the x-axis, the y-axis, and the origin. Check all symmetries that apply.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Symmetry:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = x^2 - 5$</td>
<td>□ x-axis</td>
</tr>
<tr>
<td></td>
<td>□ y-axis</td>
</tr>
<tr>
<td></td>
<td>□ origin</td>
</tr>
<tr>
<td></td>
<td>□ none of the above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equation</th>
<th>Symmetry:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5x^2 + 2y^2 = 73$</td>
<td>□ x-axis</td>
</tr>
<tr>
<td></td>
<td>□ y-axis</td>
</tr>
<tr>
<td></td>
<td>□ origin</td>
</tr>
<tr>
<td></td>
<td>□ none of the above</td>
</tr>
</tbody>
</table>
Question 25 of 58

Suppose that the function g is defined, for all real numbers, as follows.

$$g(x) = \begin{cases}
-\frac{1}{2}x^2 + 4 & \text{if } x \neq 2 \\
-4 & \text{if } x = 2
\end{cases}$$

Find $g(-2)$, $g(2)$, and $g(5)$.

$g(-2)$
$g(2)$
$g(5)$

Question 26 of 58

Determine the interval(s) on which the function is (strictly) decreasing.

Write your answer as an interval or list of intervals. When writing a list of intervals, make sure to separate each interval with a comma and to use as few intervals as possible.
Question 27 of 58

Here is a graph of the function g.

Use the graph to find the following.
If there is more than one answer, separate them with commas.

(a) All values at which g has a local minimum:
(b) All local minimum values of g:

Question 28 of 58

Suppose that the function f is defined, for all real numbers, as follows.

$$f(x) = \begin{cases}
4 & \text{if } x \neq 0 \\
3 & \text{if } x = 0
\end{cases}$$

Graph the function f.
Suppose that the function \(f \) is defined, for all real numbers, as follows.

\[
 f(x) = \begin{cases}
 -x + 3 & \text{if } x < -1 \\
 -3x + 1 & \text{if } x \geq -1
\end{cases}
\]

Graph the function \(f \). Then determine whether or not the function is continuous.

Is the function continuous?

- Yes
- No
Suppose that the function f is defined for all real numbers as follows.

$$f(x) = \begin{cases}
8 & \text{if } x < -4 \\
-10 + x^2 & \text{if } -4 \leq x < 4 \\
2x - 2 & \text{if } x \geq 4
\end{cases}$$

Graph the function f. Then determine whether or not the function is continuous.
Four functions are given below. Either the function is defined explicitly, or the entire graph of the function is shown. For each, decide whether it is an even function, an odd function, or neither.

The function r

- Even - Odd - Neither

The function s

- Even - Odd - Neither

$g(x) = -6x^4 + 5x^2$
- Even - Odd - Neither

$h(x) = 4x^5$
- Even - Odd - Neither
Question 32 of 58

Three functions are given below. For each, decide whether it is an even function, an odd function, or neither.

\[
\begin{align*}
 f(x) &= \frac{1}{7x} \\
g(x) &= \sqrt[3]{5x^2} \\
h(x) &= x |x + 2|
\end{align*}
\]

- \(f(x)\): Even
- \(g(x)\): Even
- \(h(x)\): Neither

Question 33 of 58

Lisa and her husband are each starting a saving plan. Lisa will initially set aside $50 and then add $50.85 every week to the savings. The amount \(A\) (in dollars) saved this way is given by the function \(A = 50.85N + 50\), where \(N\) is the number of weeks she has been saving.

Her husband will not set an initial amount aside but will add $80.55 to the savings every week. The amount \(B\) (in dollars) saved using this plan is given by the function \(B = 80.55N\).

Let \(T\) be total amount (in dollars) saved using both plans combined. Write an equation relating \(T\) to \(N\). Simplify your answer as much as possible.

Question 34 of 58

Suppose that the functions \(f\) and \(g\) are defined for all real numbers \(x\) as follows.

\[
\begin{align*}
f(x) &= x - 1 \\
g(x) &= 3x^2
\end{align*}
\]

Write the expressions for \((f + g)(x)\) and \((f - g)(x)\) and evaluate \((f + g)(2)\) and \((f - g)(2)\).
Question 35 of 58

Suppose that the functions \(f \) and \(g \) are defined as follows.

\[
\begin{align*}
f(x) &= -5 + 2x^2 \\
g(x) &= 9 - 5x
\end{align*}
\]

(a) Find \(\left(\frac{f}{g} \right)(3) \).

(b) Find all values that are NOT in the domain of \(\frac{f}{g} \).
If there is more than one value, separate them with commas.

Question 36 of 58

Suppose that the functions \(f \) and \(g \) are defined as follows.

\[
\begin{align*}
f(x) &= \frac{x}{x - 3} \\
g(x) &= \frac{x + 1}{x - 3}
\end{align*}
\]

Find \(\frac{f}{g} \). Then, give its domain using an interval or union of intervals.
Simplify your answers.
Question 37 of 58

Suppose that the functions \(f \) and \(g \) are defined as follows.

\[
f(x) = \frac{1}{4x^2 + 1} \]
\[
g(x) = \sqrt{5x - 3}
\]

Find \(f + g \) and \(fg \). Then, give their domains using interval notation.

\[
(f + g)(x) = \]

Domain of \(f + g \): \[
\]

\[
(fg)(x) = \]

Domain of \(fg \): \[
\]

Question 38 of 58

Suppose that the functions \(q \) and \(r \) are defined as follows.

\[
q(x) = x^2 + 9 \]
\[
r(x) = \sqrt{x + 8}
\]

Find the following.

\[
(q \circ r)(8)
\]
\[
(r \circ q)(8)
\]
Question 39 of 58

Suppose that the functions g and h are defined as follows.

\[g(x) = \frac{4}{x}, \; x \neq 0 \]
\[h(x) = x^2 - 4 \]

Find the compositions $g \circ g$ and $h \circ h$.

Simplify your answers as much as possible.

(Assume that your expressions are defined for all x in the domain of the composition. You do not have to indicate the domain.)

\[(g \circ g)(x) = \underline{\hspace{2cm}} \]

\[(h \circ h)(x) = \underline{\hspace{2cm}} \]

Question 40 of 58

For the real-valued functions $f(x) = \frac{x+2}{x-1}$ and $g(x) = 4x + 9$, find the composition $f \circ g$ and specify its domain using interval notation.

\[(f \circ g)(x) = \]

Domain of $f \circ g$: \[
\]

Question 41 of 58

The surface area $S(r)$ (in square meters) of a spherical balloon with radius r meters is given by $S(r) = 4\pi r^2$.

The radius $P(t)$ (in meters) after t seconds is given by $P(t) = \frac{7}{3}t$.

Write a formula for the surface area $N(t)$ (in square meters) of the balloon after t seconds.

It is not necessary to simplify.

\[N(t) = \]
Question 42 of 58

Use the graph of the parabola to fill in the table.

(a) Does the parabola open upward or downward?

- [] upward
- [] downward

(b) Find the intercept(s).

- x-intercept(s):
- y-intercept(s):

(c) Find the equation of the axis of symmetry.

- Equation of axis of symmetry:

(d) Find the coordinates of the vertex.

- Vertex: (\square, \square)
Question 43 of 58

Graph the parabola.

\[y = x^2 + 10x + 22 \]

Question 44 of 58

Graph the parabola.

\[y = 3(x - 2)^2 - 7 \]
Question 45 of 58
Graph the parabola.

\[y = 3x^2 + 12x + 8 \]

Question 46 of 58
Find the \(x\)-intercept(s) and the coordinates of the vertex for the parabola \(y = x^2 - 2x - 24 \). If there is more than one \(x\)-intercept, separate them with commas.

Question 47 of 58
Answer the questions below about the quadratic function.

\[f(x) = 2x^2 + 16x + 30 \]

<table>
<thead>
<tr>
<th>Does the function have a minimum or maximum value?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<p>| Where does the minimum or maximum value occur? |</p>
<table>
<thead>
<tr>
<th>(x =)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>What is the function's minimum or maximum value?</th>
</tr>
</thead>
</table>
Question 48 of 58

A vehicle factory manufactures cars. The unit cost C (the cost in dollars to make each car) depends on the number of cars made. If x cars are made, then the unit cost is given by the function $C(x) = 0.2x^2 - 100x + 28,430$. What is the minimum unit cost?

Do not round your answer.

Question 49 of 58

A school wishes to form three sides of a rectangular playground using 440 meters of fencing. The playground borders the school building, so the fourth side does not need fencing.

As shown below, one of the sides has length x (in meters).

(a) Find a function that gives the area $A(x)$ of the playground (in square meters) in terms of x.

$$A(x) = __$$

(b) What side length x gives the maximum area that the playground can have?

Side length $x: __ \text{ meters}$

(c) What is the maximum area that the playground can have?

Maximum area: $__ \text{ square meters}$
Question 50 of 58

The graph of a quadratic function with vertex \((4, 2)\) is shown in the figure below. Find the domain and the range.

Write the domain and range using interval notation.

\[
\text{domain} = \quad \text{range} = \quad
\]

Question 51 of 58

Find the equation of the quadratic function \(f\) whose graph is shown below.
Question 52 of 58

Suppose that y varies directly with x, and $y = 12$ when $x = 15$.

(a) Write a direct variation equation that relates x and y.

Equation:

(b) Find y when $x = 2$.

$y =$

Question 53 of 58

For a moving object, the force acting on the object varies directly with the object's acceleration. When a force of 32 N acts on a certain object, the acceleration of the object is 8 m/s^2. If the force is changed to 24 N, what will be the acceleration of the object?
Question 54 of 58

Shen is riding his bike. The distance he travels varies directly with the number of revolutions (turns) his wheels make. See the graph below.

(a) How many revolutions does Shen make per foot of distance traveled?

revolution(s)

(b) What is the slope of the graph?

Question 55 of 58

Suppose that \(y \) varies inversely with \(x \), and \(y = 6 \) when \(x = 5 \).

(a) Write an inverse variation equation that relates \(x \) and \(y \).

Equation:

(b) Find \(y \) when \(x = 24 \).

\(y = \)
Question 56 of 58
When a constant force acts upon an object, the acceleration of the object varies inversely with its mass. When a certain constant force acts upon an object with mass 4 kg, the acceleration of the object is 5 m/s². If the same force acts upon another object whose mass is 10 kg, what is this object's acceleration?

Question 57 of 58
Write an equation that expresses the following relationship.

\[d \text{ varies directly with } w \text{ and inversely with the square of } p \]

In your equation, use \(k \) as the constant of proportionality.

Question 58 of 58
The volume \(V \) of a fixed amount of a gas varies directly as the temperature \(T \) and inversely as the pressure \(P \).

Suppose that \(V = 42 \text{ cm}^3 \) when \(T = 84 \text{ kelvin} \) and \(P = 8 \frac{\text{kg}}{\text{cm}^2} \). Find the volume when \(T = 185 \text{ kelvin} \) and \(P = 10 \frac{\text{kg}}{\text{cm}^2} \).

\[T = 84 \text{ kelvin} \]

\[P = 8 \frac{\text{kg}}{\text{cm}^2} \]

\[P = 10 \frac{\text{kg}}{\text{cm}^2} \]

\[V = \text{? cm}^3 \]
Question 4 of 58

\[f(-7) = -2 \]
\[f(126) = 5 \]

Question 5 of 58

Question 6 of 58
Question 11 of 58

(a) For each coefficient, choose whether it is positive or negative.

(b) Choose the coefficient closest to 0.

(c) Choose the coefficient with the greatest value.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Positive ▼</td>
<td>Positive ▼</td>
<td>Negative ▼</td>
<td>Negative ▼</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 12 of 58
Question 13 of 58

Question 14 of 58
Part (a)\[f(x) = 5x^2 - 4\]

Part (b)\[f(x) = 5x^2 - 4\]
Question 18 of 58

Question 19 of 58
The graph of \(y = f(x) \) is shown. Graph \(y = f(2x) \).

The graph of \(y = g(x) \) is shown. Graph \(y = \frac{1}{2} g(x) \).

Question 20 of 58
The graph of \(y = h(x) \) is shown. Draw the graph of \(y = -h(x + 4) \).

The graph of \(y = g(x) \) is shown. Draw the graph of \(y = g(2x) - 1 \).

Question 21 of 58
Question 22 of 58

\[g(x) = (x - 2)^2 - 3 \]

Question 23 of 58

(a) Symmetry:
- ✓ x-axis
- ✓ y-axis
- ✓ origin
- □ none of these

(b) Symmetry:
- □ x-axis
- ✓ y-axis
- □ origin
- □ none of these

(c) Symmetry:
- □ x-axis
- □ y-axis
- ✓ origin
- □ none of these

Question 24 of 58
Question 25 of 58

\[g(-2) = 2 \]
\[g(2) = -4 \]
\[g(5) = -\frac{17}{2} \]

Question 26 of 58

\((-6, -4), (1, 5)\)

Question 27 of 58

(a) All values at which \(g \) has a local minimum: \(-2, 3\)
(b) All local minimum values of \(g \): \(-3, 0\)

Question 28 of 58

\[y = x^2 - 5 \]
\[5x^2 + 2y^2 = 73 \]

Symmetry:

- x-axis
- y-axis
- origin

Symmetry:

- x-axis
- y-axis
- origin

- none of the above

\[g = \sqrt{x^2} - 2 \]
\[g = \sqrt{g^2 - 4} \]
\[g = \sqrt{5 - 17} \]

\[x \in \{-1, 1, 2, 3, 4\} \]
\[y \in \{-2, -1, 0, 1, 2\} \]
Is the function continuous?

☐ Yes

☐ No
Is the function f continuous?

- Yes
- No

Question 31 of 58
The function r

- Odd

The function s

- Neither

$g(x) = -6x^4 + 5x^2$
- Even

$h(x) = 4x^5$
- Odd

Question 32 of 58

\[f(x) = \frac{1}{7x^3} \quad g(x) = \sqrt[3]{5x^2} \quad h(x) = x \left| x + 2 \right| \]

<table>
<thead>
<tr>
<th>Even</th>
<th>Odd</th>
<th>Neither</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 33 of 58

\[T = 131.40N + 50 \]

Question 34 of 58

\[(f + g)(x) = 3x^2 + x - 1 \]
\[(f \cdot g)(x) = 3x^3 - 3x^2 \]
\[(f - g)(2) = -11 \]

Question 35 of 58

(a) \[\left(\frac{f}{g} \right)(3) = -\frac{13}{6} \]

(b) Value(s) that are NOT in the domain of \(\frac{f}{g} : \frac{9}{5} \)

Question 36 of 58

\[\left(\frac{f}{g} \right)(x) = \frac{x}{x+1} \]

Domain of \(\frac{f}{g} : (-\infty, -1) \cup (-1, 3) \cup (3, \infty) \)

Question 37 of 58
\[(f + g)(x) = \frac{1}{4x^2 + 1} + \sqrt{5x - 3}\]

Domain of \(f + g\): \(\left[\frac{3}{5}, \infty\right)\)

\[(f \cdot g)(x) = \frac{\sqrt{5x - 3}}{4x^2 + 1}\]

Domain of \(f \cdot g\): \(\left[\frac{3}{5}, \infty\right)\)

Question 38 of 58

\[(q \circ r)(8) = 25\]
\[(r \circ q)(8) = 9\]

Question 39 of 58

\[(g \circ g)(x) = x\]
\[(h \circ h)(x) = x^4 - 8x^2 + 12\]

Question 40 of 58

\[(f \circ g)(x) = \frac{4x + 11}{4x + 8}\]

Domain of \(f \circ g\): \((-\infty, -2) \cup (-2, \infty)\)

Question 41 of 58

\[N(t) = 4\pi \left(\frac{7}{3} t\right)^2\]

Question 42 of 58
(a) Does the parabola open upward or downward?

\[
\begin{array}{c|c}
\text{upward} & \text{downward} \\
\end{array}
\]

(b) Find the intercept(s).

- \(x\)-intercept(s): \(-1, 3\)
- \(y\)-intercept(s): \(-3\)

(c) Find the equation of the axis of symmetry.

equation of axis of symmetry: \(x = 1\)

(d) Find the coordinates of the vertex.

vertex: \((1, -4)\)

Question 43 of 58

![Graph showing a parabola]

Question 44 of 58
Question 45 of 58

Question 46 of 58

x-intercept(s): $-4, 6$
vertex: $(1, -25)$

Question 47 of 58

<table>
<thead>
<tr>
<th>Does the function have a minimum or maximum value?</th>
<th>minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where does the minimum or maximum value occur?</td>
<td>$x = -4$</td>
</tr>
<tr>
<td>What is the function's minimum or maximum value?</td>
<td>-2</td>
</tr>
</tbody>
</table>
Question 48 of 58
Unit cost: $15,930

Question 49 of 58

(a) Find a function that gives the area \(A(x) \) of the playground (in square meters) in terms of \(x \).

\[
A(x) = 440x - 2x^2
\]

(b) What side length \(x \) gives the maximum area that the playground can have?

Side length \(x \): 110 meters

(c) What is the maximum area that the playground can have?

Maximum area: 24,200 square meters

Question 50 of 58

domain: \((-\infty, \infty)\)
range: \((-\infty, 2]\)

Question 51 of 58

\[f(x) = 3(x - 4)^2 - 5\]

Question 52 of 58

(a) Write a direct variation equation that relates \(x \) and \(y \).

Equation: \[y = \frac{4}{5}x \]

(b) Find \(y \) when \(x = 2 \).

\[y = \frac{8}{5} \]
Question 53 of 58

6 m/s²

Question 54 of 58

(a) How many revolutions does Shen make per foot of distance traveled?

\[
\frac{1}{5} \text{ revolution(s)}
\]

(b) What is the slope of the graph?

5

Question 55 of 58

(a) Write an inverse variation equation that relates \(x \) and \(y \).

Equation: \(y = \frac{30}{x} \)

(b) Find \(y \) when \(x = 24 \).

\[y = \frac{5}{4} \]

Question 56 of 58

2 m/s²

Question 57 of 58

\[d = \frac{kw}{p^2} \]

Question 58 of 58

The volume is 74 cm³.