Question 1 of 20

Solve the inequality for \(x \).

\[6x - 35 \geq -5(3 - 2x) \]

Simplify your answer as much as possible.

Question 2 of 20

For each of the following equations, determine whether \(y \) is a function of \(x \).

- \(y = 6x^2 - 1 \)
 - Function
 - Not a function

- \(x = 7y^2 + 5 \)
 - Function
 - Not a function

- \(3x - y = 9 \)
 - Function
 - Not a function

- \(y^2 = 9x \)
 - Function
 - Not a function
Question 3 of 20

The graph of the relation G is shown below.

![Graph of the relation G]

Give the domain and range of G.
Write your answers using set notation.

Question 4 of 20

Calculate the distance between the points $N = (-3, 2)$ and $C = (2, -4)$ in the coordinate plane.

Give an exact answer (not a decimal approximation).
Question 5 of 20

Salma launches a rocket straight up into the air. The table below gives the height $H(t)$ of the rocket (in meters) at a few times t (in seconds) during its flight.

<table>
<thead>
<tr>
<th>Time t (seconds)</th>
<th>Height $H(t)$ (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.2</td>
<td>110</td>
</tr>
<tr>
<td>6.6</td>
<td>198</td>
</tr>
<tr>
<td>8.8</td>
<td>44</td>
</tr>
<tr>
<td>13.2</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) Find the average rate of change for the height from 0 seconds to 2.2 seconds.

_____ meters per second

(b) Find the average rate of change for the height from 6.6 seconds to 13.2 seconds.

_____ meters per second

Question 6 of 20

Graph the solution to the inequality on the number line.

$$|5y - 5| \leq 10$$

Question 7 of 20

Solve for u.

$$-5|u + 5| = -40$$
Question 8 of 20

For each graph below, state whether it represents a function.

<table>
<thead>
<tr>
<th>Function?</th>
<th>Graph 1</th>
<th>Graph 2</th>
<th>Graph 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Yes</td>
<td>[] No</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function?</th>
<th>Graph 4</th>
<th>Graph 5</th>
<th>Graph 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Yes</td>
<td>[] No</td>
<td>[] Yes</td>
<td>[] No</td>
</tr>
</tbody>
</table>

Question 9 of 20

Find an equation of the circle whose diameter has endpoints \((-3, 6)\) and \((1, -2)\).

Question 10 of 20

Solve the inequality for \(u\).

\[-\frac{3}{7}u + 14 \geq 11\]

Simplify your answer as much as possible.
Question 11 of 20

The graph of a quadratic function with vertex \((4, 1)\) is shown in the figure below. Find the domain and the range.

Write the domain and range using interval notation.

\[
\text{domain} = \underline{\hspace{2cm}} \\
\text{range} = \underline{\hspace{2cm}}
\]

Question 12 of 20

Fill in the blank to make the expression a perfect square.

\[y^2 + 14y + \underline{\hspace{1cm}}\]

Question 13 of 20

Solve for \(x\), where \(x\) is a real number.

\[\sqrt{2x + 15} = \sqrt{4x + 7}\]

Question 14 of 20

Find an equation of the circle that has center \((6, -5)\) and passes through \((2, 5)\).
For each of the following, determine whether the equation defines y as a function of x.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Function</th>
<th>Not a function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x = y^3$</td>
<td>Function</td>
<td>Not a function</td>
</tr>
<tr>
<td>$9 =</td>
<td>y</td>
<td>+ x^2$</td>
</tr>
<tr>
<td>$36 + y^2 = x^2$</td>
<td>Function</td>
<td>Not a function</td>
</tr>
<tr>
<td>$y = 6</td>
<td>x</td>
<td>- 3$</td>
</tr>
</tbody>
</table>
Question 16 of 20

The entire graph of the function f is shown in the figure below. Write the domain and range of f as intervals or unions of intervals.

Question 17 of 20

The function f is defined by $f(x) = \frac{5 + x}{6 + 2x}$.

Find $f(2x)$.

Question 18 of 20

Give the equation of the circle centered at the origin and passing through the point $(-6, 0)$.
Question 19 of 20

Graph the line $y = 3$.

Question 20 of 20

The credit remaining on a phone card (in dollars) is a linear function of the total calling time made with the card (in minutes). The remaining credit after 38 minutes of calls is 18.92, and the remaining credit after 65 minutes of calls is 14.60. What is the remaining credit after 73 minutes of calls?
Question 1 of 20

\[x \leq -5 \]

Question 2 of 20

<table>
<thead>
<tr>
<th>Equation</th>
<th>Function</th>
<th>Not a function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 6x - 1)</td>
<td>Function</td>
<td>Not a function</td>
</tr>
<tr>
<td>(x = 7y^2 + 5)</td>
<td>Function</td>
<td>Not a function</td>
</tr>
<tr>
<td>(3x - y = 9)</td>
<td>Function</td>
<td>Not a function</td>
</tr>
<tr>
<td>(y^2 = 9x)</td>
<td>Function</td>
<td>Not a function</td>
</tr>
</tbody>
</table>

Question 3 of 20

\[
\text{domain} = \{3, \ -3, \ 0\} \\
\text{range} = \{3, \ 4, \ -3\}
\]

Question 4 of 20

Distance: \(\sqrt{61} \)

Question 5 of 20
(a) Find the average rate of change for the height from 0 seconds to 2.2 seconds.

50 meters per second

(b) Find the average rate of change for the height from 6.6 seconds to 13.2 seconds.

−30 meters per second
Question 9 of 20

\[(x + 1)^2 + (y - 2)^2 = 20\]

Question 10 of 20

\[u \leq 7\]

Question 11 of 20

domain: \((-\infty, \infty)\)

range: \((-\infty, 1]\)

Question 12 of 20
\(y^2 + 14y + 49 \)

Question 13 of 20

\(x = 4 \)

Question 14 of 20

\((x - 6)^2 + (y + 5)^2 = 116\)

Question 15 of 20

<table>
<thead>
<tr>
<th>Expression</th>
<th>Function</th>
<th>Not a function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x = \frac{3}{y})</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>(9 =</td>
<td>y</td>
<td>+ x^2)</td>
</tr>
<tr>
<td>(36 + y^2 = x^2)</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>(y = 6 \left</td>
<td>x \right</td>
<td>- 3)</td>
</tr>
</tbody>
</table>
Question 16 of 20

domain = \((-2, -1) \cup (1, 5)\)
range = \((-5, 4)\)

Question 17 of 20

\[f(2x) = \frac{5 + 2x}{6 + 4x} \]

Question 18 of 20

\[x^2 + y^2 = 36 \]

Question 19 of 20

![Graph](image)

Question 20 of 20

13.32