Section 6.7 Financial Models

Compound Interest

(Digital Handout p. 87)

\[F = P \left(1 + \frac{r}{n}\right)^{nt} \]

If Tamisha has $1000 to invest at 5% per annum compounded quarterly, how long will it be before she has $1550?

If the compounding is continuous, how long will it be?

\[F = Pe^{rt} \]

\[P = 1000 \]

\[r = 5\% = 0.05 \]

\[n = 4 \]

\[t = ? \]

\[F = 1550 \]

\[t = \log_{1.0125} \left(\frac{1550}{1000}\right) \]

\[t = \frac{\log_{1.0125}(1.55)}{\log_{1.0125}(1.0125)} \]

\[t = 8.819767064 \text{ years} \]
56.7 Financial Models

Compound Interest

(Digital Handout p. 87)

\[F = P \left(1 + \frac{r}{n}\right)^{nt} \quad F = Pe^{rt} \]

Ex: MM 23

If Tanisha has $1000 to invest at 5% per annum compounded quarterly, how long will it be before she has $1550?

If the compounding is continuous, how long will it be?

\[F = P \left(1 + \frac{r}{n}\right)^{nt} \quad F = Pe^{rt} \]

\[P = 1000 \]
\[r = 0.05 \]
\[n = 4 \]
\[t = ? \]

\[F = 1550 \]

Variable up in exponential use \(\log \)

\[\frac{1550}{1000} = \left(1.0125\right)^{4.0t} \]

\[\ln 1.55 = \ln 1.0125 \]

\[\ln 1.55 - \ln 1.0125 = 4t \]

\[4t = \log_{1.0125} 1.55 \]

\[4t = 35.279 \]

\[t = 8.819767064 \text{ years} \]
\[P = 1000 \]
\[r = 5\% = 0.05 \]
\[F = 1550 \]
\[t = ? \]

\[F = Pe^{rt} \]
\[1550 = 1000 \cdot e^{0.05 \cdot t} \]
\[\frac{1550}{1000} = e^{0.05t} \]
\[1.55 = e^{0.05t} \]
\[0.05t = \ln 1.55 \]
\[0.05t = 0.4382549389... \]
\[T = \frac{0.05}{0.05} = 0.05 \]

\[t = 8.765098614... \text{ years} \]

Continuously

\[8.819767064... \text{ years} \]

quarterly

Not a big difference
What rate of interest compounded annually is required to double an investment in 23 years?

\[F = P \left(1 + \frac{r}{n}\right)^{nt} \]

\[F = 2P \] (double investment)

\[\frac{2P}{P} \]

\[2P = P \left(1 + \frac{r}{1}\right)^{23} \]

\[\frac{2P}{P} = \left(1 + r\right)^{23} \]

\[2 = \left(1 + r\right)^{23} \]

\[\sqrt[23]{2} \]

\[\sqrt[23]{2} = 1 + r \]

\[0.030595545 = 1 + r \]

\[\frac{0.030595545}{1} = r \]

\[r \approx 3.06\% \]
What will a $150,000 house cost 9 years from now if the price appreciation for homes over that period averages 8% compounded annually?

\[P = 150000 \]
\[F = P \left(1 + \frac{r}{n}\right)^{nt} \]
\[t = 9 \]
\[r = 8\% = 0.08 \]
\[n = 1 \]
\[F = 150000 \left(1 + \frac{0.08}{1}\right)^{9} \]
\[F = ?? \]
\[F = 299850.6941... \]
\[F = \$299850.69 \]