Prof. Lacoste

Exam 4 (Schedule)
- Class in noon
 Exam 4 time: 1:00 pm - 3:30 pm
- Class at 3:00
 Exam 4 time: 5:00 pm - 7:30 pm
 December 9

4.3 Logarithmic Functions

* Logarithm is a missing exponent
EGOB = Exponent that Goes On Base
Examples p. 196

- Evaluate Logarithmic Expressions

\[\log_b \left(\frac{a}{b} \right) = \log_b a - \log_b b = \log_b \frac{a}{b} \]

"log base to... of..."
Exam 4 (Schedule)
- Class in noon
 Exam 4 Time: 1:00 pm - 3:30 pm
- Class at 3:00
 Exam 4 Time: 5:00 pm - 7:30 pm
 - December 9

4.3 Logarithmic Functions

Logarithm is a missing exponent

EGOB \rightarrow Exponent that Goes On Base

Examples p. 196

*Evaluate Logarithmic Expressions

$$\log_{\text{square}}(\text{rectangle}) = \text{square} \leftrightarrow \text{rectangle} - 0$$

"log base to... of..."
\(\log_6 6 = 1 \quad \text{(a)} \quad \log_q 1 = 0 \quad \text{(c)} \)

\(\log_{64} \frac{64}{64} = -3 \quad \text{(b)} \quad \log_4 64 = 2 \quad \text{(c)} \)

\(6^1 = \frac{1}{64} \)

\(4^2 = 1 \)

\(4^2 = \frac{1}{4^{-2}} \)

\(4^2 = 4^{-2} \)

\(? = -3 \)

• Converting Between Logarithmic and Exponential Forms

Exponential Form: \(a = x \leftrightarrow y = \log_a x \)

Logarithmic Form: \(\text{base} \)

Exponential Form: \(\text{exponent} \)

\(\log_6 \frac{1}{6} = -1 \quad \text{(a)} \quad \log_2 \frac{1}{32} = -5 \leftrightarrow 2^{-5} = \frac{1}{32} \quad \text{(c)} \)
(b) $7^2 = 49$
\[\log_7 49 = 2 \]
\[4^3 = 64 \]

- The "Common" Log & the "Natural" Log

The two most frequently seen log bases are 10 & e. Because of this, each gets a special name. $\log_{10} x$ is called the common log, $\log_e x$ is called the natural log & gets its own notation: $\ln x$. Both the common log (log) and the natural log (ln) have buttons on your calculator. When log is written without a base, you must research what the base is. In your book/homework/calculator, $\log x$ means $\log_{10} x$. But older math books, $\log x$ means $\log_e x = \ln x$. Be Careful!

*ALEKS Problems

(a) $\ln x = 3$
\[\log_e x = 3 \]
\[e^3 = x \]

(b) $e^y = 9$
\[\log_e 9 = y \]
\[\ln 9 = y \]

(a) $e^y = x$
\[\ln x = 8 \]

(b) $\ln 4 = y$
\[e^y = 4 \]
\[f(x) = b^x \] Let's find the inverse

Replace \(f(x) \) with \(y \)

\[y = b^x \]

Swap \(x \)'s and \(y \)'s

\[x = b^y \]

Solve for \(y \) using the converter

\[y = \log_b x \]

Replace \(y \) with \(f^{-1}(x) \)

\[f^{-1}(x) = \log_b x \]

Exponential function \& logarithmic function are inverse of each other

• Graph Logarithmic Functions

- The exponential function approach the horizontal asymptote \(y = 0 \), whereas the logarithmic function approach the vertical asymptote \(x = 0 \).

- When you are choosing \(x \) that are integer powers of the base.
(2) \(x \) \hline \(y = \log_{\frac{1}{3}} x \)
\((\frac{1}{3})^{-2} = 9 \) \(y = \log_{\frac{1}{3}} 9 = -2 \) \((9, -2) \)
\((\frac{1}{3})^{-1} = 3 \) \(y = \log_{\frac{1}{3}} 3 = -1 \) \((3, -1) \)
\((\frac{1}{3})^0 = 1 \) \(y = \log_{\frac{1}{3}} 1 = 0 \) \((1, 0) \)
\((\frac{1}{3})^{\frac{1}{3}} = \frac{1}{3} \) \(y = \log_{\frac{1}{3}} \frac{1}{3} = 1 \) \((\frac{1}{3}, 1) \)
\((\frac{1}{3})^{\frac{1}{3}} = \frac{1}{9} \) \(y = \log_{\frac{1}{3}} \frac{1}{9} = 2 \) \((\frac{1}{9}, 2) \)

(3) \(x \) \hline \(y = \log_3 x \)
\((3)^{-2} = \frac{1}{9} \) \(y = \log_3 \frac{1}{9} = -2 \) \((\frac{1}{3}, -2) \)
\((3)^{-1} = \frac{1}{3} \) \(y = \log_3 \frac{1}{3} = -1 \) \((\frac{1}{3}, -1) \)
\((3)^0 = 1 \) \(y = \log_3 1 = 0 \) \((1, 0) \)
\((3)^1 = 3 \) \(y = \log_3 3 = 1 \) \((3, 1) \)
\((3)^2 = 9 \) \(y = \log_3 9 = 2 \) \((9, 2) \)