Section 4.1 (Start)

Vertex: \((h, k)\) Other point: \((x', y')\)

\[y = a(x-h)^2 + k \]
\[y' = -1(x - 4)^2 + (-9) \]

\[-13 = a(4 - 1)^2 + (-4) \]
\[-13 = a(3)^2 - 4 \]
\[-13 = 9a \]
\[a = \frac{-13}{9} \]

Finding the vertex:

\[(x, y) = (3, -9) \]

4.1 Inverse Functions

- Identify a One-to-one Function

Definition: A function is one-to-one if, for any two different inputs, you get two different outputs!

Definition: If every horizontal line intersects the graph of a function \(f \) in at most one point, then it passes the horizontal line test and \(f \) is one-to-one.
(2) Vertex: \((1, -4)\) Other point \((4, -13)\)

\[
y = a(x-h)^2 + k
\]

\[
y = -1(x-1)^2 + (-4)
\]

\[
-13 = a(4-1)^2 + (-4)
\]

\[
-13 = a(3)^2 + (-4)
\]

\[
-13 = 9a - 4
\]

\[
y = a
\]

\[
\frac{9}{9} = \frac{9}{a}
\]

\[
a = 1
\]

\[
\frac{-13}{9} = \frac{-13}{a}
\]

\[
\frac{-13}{9} = \frac{-13}{a}
\]

4.1 Inverse Functions

- Identify \(a\) One-to-one function

Definition: A function is one-to-one if, for any two different inputs, you get two different outputs.

Definition: If every horizontal line intersects the graph of a function \(f\) in at most one point, then it passes the horizontal line test and \(f\) is one-to-one.
ALEKS Problems

1. Yes
2. Yes
3. No
4. Yes
5. No
6. No

- **Determine Whether Two Functions are Inverse**
- **Definition of an Inverse Function**

- Let f be a one-to-one function. Then g is the inverse of f if the following conditions are both true.

 1. $(f \circ g)(x) = x$ for all x in the domain of g

 2. $(g \circ f)(x) = x$ for all x in the domain of f.

- **ALEKS Problems**

 8. $f(x) = \frac{4}{x}$, $g(x) = \frac{-4}{x}$

 $$(g \circ f)(x) = \frac{-4}{f(x)} \cdot \frac{x}{4}$$

 $$(f \circ g)(x) = \frac{4}{g(x)}$$

 Note: f and g are not inverse of each other.

 $$(f \circ g)(x) = \frac{4}{x} \cdot \frac{x}{-4} = -1$$

 $$(g \circ f)(x) = \frac{-4}{\frac{4}{x}} = -x$$
2. Answer:
\[f(x) = 4 \quad g(x) = 4x \]
\[(f \circ g)(x) = 16x \]
\[(g \circ f)(x) = 16x \]

They are not inverse of each other.

3. \[f(x) = 2x + 5 \quad g(x) = \frac{x - 5}{2} \]

\[f(g(x)) = \frac{g(x) - 5}{2} \]
\[= \frac{\frac{x - 5}{2} - 5}{2} \]
\[= \frac{2x + 5 - 10}{2} \]
\[= \frac{2x - 5}{2} \]

\[f^{-1}(x) = \frac{2x - 5}{2} \]

Find the Inverse of a Function

When we are given the equation of a one-to-one function \(f \) and asked to find its inverse \(f^{-1} \), this is how to do it:

1. Replace \(f(x) \) with \(y \).
2. Swap all \(x \)'s into \(y \)'s and all \(y \)'s into \(x \)'s.
3. Solve for \(y \).
4. Replace \(y \) with \(f^{-1}(x) \).