1.5 Quadratic Applications

- Solve Applications Involving Quadratic Models

 * Ranged to the nearest hundreds

 \[\frac{4.359}{100 \text{ hundreds}} \]

 * Read Examples on Lecture * p.40:41

 > Problem (Answer) > Solve i.Check

 1. Ball problem: \(t = 2.11 \text{ sec} \)

 2. Rocket problem: \(t = 0.67 \text{ sec} \)

 \[t = 14.01 \]

1.6 More Equations: Application

- Solve Absolute Value Equations p.42

 * Note: Not possible for a distance to be negative (-)

 \[|x| \text{ means (represent)} \text{ distance from zero (0)} \]
1.5 Quadratic Applications

- Solve Applications Involving Quadratic Models
 - Rounded to the nearest hundredths

\[
\sqrt{4.359} \\
\text{tenths} \downarrow \text{hundredths}
\]

* Read Examples on Lecture * p.40 \& 41.

* Problem (Answer) * Solve \& Check

- Ball problem: \(t \approx 2.11 \) sec
- Rocket problem: \(t \approx 0.67 \) sec \(\text{to} 14.01 \)

1.6 More Equations \& Applications

- Solve Absolute Value Equations p.412

* (Note) Not possible for a distance to be negative (-)

\[\star \rightarrow \text{means (except)} \text{distance from zero (0)} \]
Solve Equations Involving Absolute Value

★ What is inside the absolute bars
\[|6x - 12| = 6 \]
\[|x| = 6 \]

★ Problem (Answers) ★ Solve ★ Check

1. \(15w + 10| = 15\)
 \[|1| = 15 \]
 \[= -15 \text{ or } = 15 \]
 \[5w + 10 = -15 \]
 \[-10 \]
 \[5w = -25 \]
 \[w = -5 \] or
 \[5w + 10 = 15 \]
 \[-10 \]
 \[5w = 5 \]
 \[w = 1 \]

2. \(13v + 3| - 20 = -20\)
 \[+10 \]
 \[13v = 0 \]
 \[v = 0 \]
 \[\frac{|v|}{4} = 0 \]
 \[\frac{|v|}{4} = 0 \]
 \[|v| = 0 \]
 \[w = -3 \]
 \[w = -3 \]
 \[|w| = 10 \] or
 \[|w| = 10 \]
 \[w - 8 = 10 \] or
 \[w - 3 = 10 \]
 \[w = 18 \] or
 \[w = 13 \]

3. \(4|w - 3| = 40\)
 \[|w| = 10 \]
 \[\frac{|w|}{4} = 10 \]
 \[w = 40 \] or
 \[w = -40 \]
 \[w = -3 \]
 \[w = 3 \]
 \[w = -3 \]
 \[w = 3 \]

4. \(15x + 5| - 6 = -56\)
 \[|x| - 6 = -56 \]
 \[|x| = -50 \]
 \[No \ Solution \]