6.2 one-to-one functions, inverse functions

Inverse function defined by an equation

1) replace $f(x)$ w/ y

2) x in all x into y's & all y's into x's

3) solve for y

4) replace y w/ $f^{-1}(x)$

6.2.67 Find inverse

$f(x) = \frac{4x}{3y-7}$

1) step 1: replace $f(x)$ w/ y

$y = \frac{4x}{3y-7}$

2) set out x in y & y in x's

$y = \frac{4x}{3y-7} = x = \frac{4y}{3y-7}$

3) solve for y

$x = \frac{4y}{3y-7}$

$3y-7(x) = 4y$

$3x+7x = 4y$

$3y-7 = 4y$

$7 = 3y$
6.2 one-to-one functions; inverse functions

Inverse functions defined by an equation

1) replace \(f(x) \) w/ \(y \)

2) turn all \(x \)'s into \(y \)'s & all \(y \)'s into \(x \)'s

3) solve for \(y \)

4) replace \(y \) w/ \(f^{-1}(x) \)

6.2.67 find inverse

\[f(x) = \frac{4x}{3x-7} \]

1) step 1 - replace \(f(x) \) w/ \(y \)

\[y = \frac{4x}{3x-7} \]

2) turn all \(x \)'s into \(y \)'s & all \(y \)'s into \(x \)'s

\[y = \frac{4y}{3y-7} \Rightarrow x = \frac{4y}{3y-7} \]

3) solve for \(y \)

\[x = \frac{4y}{3y-7} \]

\[x(3y-7) = 4y \]

\[3xy - 7x = 4y \]

\[3xy - 3xy = 4y + 7x \]

\[0 = 4y + 7x \]

\[y = \frac{-7x}{4} \]
\[-7x = 4y - 3x y \]
\[\frac{-7x}{4-3x} = y \]

4.) replace \(y \) w/ \(f^{-1}(x) \)

\[f^{-1}(x) = \frac{-7x}{4-3x} \]

\[-1 \left(f^{-1}(x) \right) = \left(\frac{-7x}{4-3x} \right)^{-1} \]
\[= \frac{7x}{4-3x} \]
\[= \frac{7x}{3x-4} \]