Mini-project 1
L.N. pg. 44

\(f(x) = \text{function notation} \)
how to say = \(f \) of \(x \)

\(f(x) = \sqrt{x} \)

\(y = \sqrt{x} \)

3, 4, 1

Graph \(y = \sqrt{x} \)

Deciding your scale

1) circle smallest \(y \) largest \#s in table

2) write multiplies of 5 that include these \(y \)es \(w/in \ or \ btw \ them \)

\[\begin{align*}
-10 & \quad -5 & \quad 0 & \quad 5 & \quad 10 & \quad 15 & \quad 20 & \quad 25 \\
\hline
0 & \quad 5 & \quad 10 & \quad 15 & \quad 20 & \quad 25 & \quad 16 \\
\end{align*} \]

3) place a box, the smallest one possible, that includes both values, use the "tic" marks on the
\# line

4) the scale comes from the end pts of the box
\(0 \) to 20 by multiples of 5
Mini-project 1
L.N. pg. 44

\(f(x) = \text{function notation} \)
\(\text{how to say } = f \text{ of } x \)

\[f(x) = \sqrt{x} \]
\[y = \sqrt{x} \]

3-4-1
graph: \(y = \sqrt{x} \)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
</tbody>
</table>

Deciding your scale

1) circle smallest & largest #’s in table

2) write multiples of 5 that include these values w/in or b/w them.

3) make a box, the smallest one possible, that includes both values, use the ”tic” mark on the # line

4) the scale comes from the end pts’ of the box

0 to 20 by multiples of 5
1) Project on website
 - print it
 - complete all problems

Lecture notes pg. 44 & 45

Project due Tuesday night online
& in person Wednesday
3.1 Functions
lecture notes pg 31

26

\[7x^2 + 6y^2 = 1 \]
\[6y^2 = -7x^2 + 1 \]
\[\frac{6y^2}{6} = 1 - 7x^2 \]
\[y^2 = \frac{1 - 7x^2}{6} \]
\[y = \pm \frac{\sqrt{1 - 7x^2}}{6} \]

\[y = \frac{1 - 7(0)^2}{6} \]
\[y = \frac{1}{6} \]
\[y = \pm \frac{\sqrt{\frac{1}{6}}}{6} \]