- Ch 3 Test
- Announcements:
 1. Bring Mini-Project A or B (whichever you chose) to class on Thursday. The prof will collect them.
 2. This is yellow week for the metacognition assignment.
 3. Formulae Quiz 1 is on Tuesday, 10/30. Find the files on my website, and use them to study.

5.4.1 Linear Fractions and Their Properties (pp 51-72)

Forms of lines:

- **Slope-intercept form**
 \[y = mx + b \]
 \[y = 3x - 7 \]

- **Point-slope form**
 \[y - y_1 = m(x - x_1) \]
 \[y + 7 = 2(x - 7) \]

- **Standard form**
 \[Ax + By = C \]
 \[2x - \frac{1}{2}y = \frac{3}{2}n \]

\[\text{Problem 51} \]

\[\text{#12 add 18} \]

1st table

- \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-5)}{0 - (-2)} = 4 \]

2nd table

- \[m = \frac{2(y_2 - y_1)}{x_2 - x_1} = \frac{2}{-1 - (-2)} = \frac{2}{1} = 2 \]

- \[m = \frac{1 - 2}{4 - 1} = \frac{-1}{3} = -\frac{1}{3} \]

Different! So, non-linear

Oct 2, 2018
- Ch 3 Test
- Announcements:
 ① Bring Mini-Project A or B (whichever you chose) to class on Thursday. The Prof will collect them.
 ② This is yellow week for the metacognition assignment.
 ③ Formulas Quiz 1 is on Tuesday, 10/9. Find the files on my website, and use them to study.

§ 4.1 Linear Fractions and Their Properties (pp-51-77)

Obs: Forms of lines:

- Slope-intercept form: \[y = mx + b \]
- Point-slope form: \[y - y_1 = m(x - x_1) \]
- Standard form: \[Ax + By = C \]

\[y = 3x - 2 \]
\[y + 7 = 2(x - 1) \]
\[2x + \frac{1}{4}y = 3 \]

\[\text{P:51} \]

12 and 18

1st table ->

\[m = \frac{y_2-y_1}{x_2-x_1} = \frac{1 - (-5)}{0 - (-2)} = \frac{1 + 5}{0 + 2} = \frac{6}{2} = 3 \] ③

\[m = \frac{4 - 1}{1 - 0} = \frac{3}{1} = 3 \] ③ Same, so, linear

\[m = \frac{13 - 4}{4 - 1} = \frac{9}{3} = 3 \] ③

2nd table ->

\[m = \frac{2(-5)}{-1 - (-2)} = \frac{-10}{1} = -10 \] ③ Different! So, non-linear

\[m = \frac{1 - 2}{1 - (-1)} = \frac{-1}{2} = -\frac{1}{2} \] ②
The slope tells us if our graph is increasing, decreasing, or constant.

E.g.
- slope = 3 → increasing
- slope = 0 → constant
- slope = -3 → decreasing