3.1) Functions

1. Determine whether a relation represents a function

 Solve for y

 If you find a value of x that gives two or more values for y, then the equation is not a function.

2. Is $7x^2 + 6y^2 = 1$ a function?

 $6y^2 = 1 - 7x^2$

 $y^2 = \frac{1 - 7x^2}{6}$

 $y = \pm \sqrt{\frac{1 - 7x^2}{6}}$

 Challenge: Find a value for x such that when you replace x with that number and simplify, you get two or more real values for y.

 If $x = 0$, then

 $y = \pm \sqrt{\frac{1 - 7(0)^2}{6}}$

 $y = \pm \sqrt{\frac{1}{6}}$

 $y = \pm 0.48$ Not a function!
3.1) Functions

1. Determine whether a relation represents a function
 • solve for y
 • if you find a value of x that gives two or more values for y, then the equation is not a function

20) Is \(7x^2 + 6y^2 = 1 \) a function?

\[6y^2 = 1 - 7x^2 \]
\[y^2 = \frac{1 - 7x^2}{6} \]
\[y = \pm \sqrt{\frac{1 - 7x^2}{6}} \]

Challenge: Find a value for \(x \) such that when you replace \(x \) with that number and simplify, you get two or more real values for \(y \)

\(\frac{1}{2} \)

if \(x = 0 \), then
\[y = 1 \sqrt{\frac{1 - 7(0)^2}{6}} \]
\[y = \pm \sqrt{\frac{1}{6}} \]
\[y = \pm 1.08 \quad \text{Not a function!} \]