4.4 (Continued) (pp 68 - 71).

7) \(h(x) = \frac{-32x^2 + x + 140}{(55)} \)

Store the values of \(a \), \(b \), and \(c \) in your graphing calculator.

241, 1, 3, 1, 2

\(\begin{align*}
& \text{\textbf{Alpha}} \quad \text{\textbf{Math}} \quad \text{\textbf{Apps}} \quad \text{\textbf{Enter}} \\
& \text{\textbf{Prgm}} \end{align*} \)

\(x \) - horizontal distance

"hits the water" height \(h(x) \) equals 0

\[0 = \frac{-32x^2 + x + 140}{(55)} \]

\[a = \quad b = \quad c = \]

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
4.4 (Continued) (pp 68 - 71).

7. \(h(x) = -\frac{32x^2}{(55)^2} + x + 90 \).

Store the values of \(a \), \(b \), and \(c \) in your graphing calculator.

Clear your calculator memory.

4, 10, 10, 10, 2

\(a \rightarrow 5:0 \) Alpha Math enter

\(b \rightarrow \) prgm

\(c \rightarrow \)

\(-\text{horizontal distance} \)

"\(h \) is the water" height \(h(x) \) equals 0

\(0 = -\frac{32x^2}{(55)^2} + x + 10 \) -> Quadratic formula.

\(a = \quad b = \quad c = \)

\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
* with the + sign
 \[x \approx -95 \text{ feet} \rightarrow \text{the distance can't be negative.} \]

(Extraneous solution)

- with the (-) sign
 \[x \approx 189 \text{ feet} \]

d) Use a graphing utility
\[\text{by } [-10, 240] \]
\[x \text{-values} \quad y \text{-values} \]
\[X_{sc} = 20 \quad Y_{sc} = 50 \]

e) height = 100 feet, how far is it from the cliff?
\[y_2 = 100 \]
Find the intersection,
\[2^{\text{nd}} \text{Trace} \quad 5 \quad \text{first curve.} \quad 2^{\text{nd}} \text{curve} \]
Guess \(\star \)
\[(151, 100) \]
\[x = 151 \text{ feet far from the cliff} \]

2.63 Build Quadratic Models from verbal descriptions

4) \[x = -8p + 176 \]
9) Revenue \(R \) as a function of \(x \) variable 1 as a function of variable 2.
\[R = x \]
\[\text{Get the } p \text{ out of here} \]
\[x = -8p + 176 \]

\[x - 176 = -8p \]

\[x = \frac{-8p}{8} \]

\[\frac{-x + 22}{8} \] or \[\frac{-1x + 22}{8} \]

\[x \text{ separated from the fraction} \]

\[R = x \left(-\frac{1}{8}x + 22 \right) \rightarrow \text{step 1} \]

Step 2 \(\rightarrow \) already solved

\[R = -\frac{1}{8}x^2 + 22x \]

Step 3 = \[R(x) = -\frac{1}{8}x^2 + 22x \]

b) Implied Domain:

Smallest \(x \) quantity sold = 0.
Largest \(x \) quantity sold = make the price free \(p = 0 \).

\[x = -8p + 176 \]

\[x = -8(0) + 176 \]

\[x = 176 \rightarrow \text{largest } x \]

Domain: \([0, 176]\)
c) Revenue if 144 units are sold:

\[X = 144. \]

\[R(144) = -\frac{1}{8} \cdot (144)^2 + 22 \cdot (144). \]

\[R(144) = \$576.00. \]

d) What maximizes the revenue?

Vertex of the quadratic function:

\[R(x) = -\frac{1}{8} \cdot x^2 + 22 \cdot x \]

\[\left(\frac{-b}{2a}, \frac{c-b^2}{4a} \right) \]

\[a = -\frac{1}{8}, \quad b = 22, \quad c = 0. \]

\[\left(88, \frac{968}{8} \right) \]

\[\frac{968}{88} = p \]

\[p = \$11 \]

When 88 units are sold, the maximum revenue is \$968.00.

e) What price should the company charge to maximize revenue?

\[P = x \cdot P \]

\[968 = 88 \cdot p \]

\[\frac{968}{88} = p \]

\[p = \$11 \]
What price should the company charge to earn at least $840 in revenue?

\[R(x) = -\frac{1}{8}x^2 + 22x \]

\[840 = -\frac{1}{8}x^2 + 22x \]

\[0 = -\frac{1}{8}x^2 + 22x - 840 \]

Quadratic formula: \(a = -\frac{1}{8}, \ b = 22, \ c = -840 \).

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = 56 \quad \text{or} \quad x = 120 \]

\[R = xy \]

\[R = 840 \]

\[840 = 56p \quad \text{or} \quad 840 = 120p \]

\[p = \$15 \quad \text{or} \quad p = \$3 \]

If the price is between $7 and $15, the revenue will be at least $840 or $800.
When working with rectangles:

Area: \(A = \text{w} \times \text{l} \)

Perimeter: \(P = 2\text{l} + 2\text{w} \)

280 yards of fencing.

Variable 1: \(\text{w} \)

Variable 2: \(\text{l} \)

a) big blue box

\[A = \text{l} \times \text{w} \]

\[P = 280 \]

\[\frac{280}{2} = \text{l} \]

\[\frac{280}{2\text{w}} = \text{l} \]

\[\frac{140}{\text{w}} = \text{l} \]

Step 2

\[A = (140 - \text{w}) \times \text{w} \]

Step 3

\[A = -\text{w}^2 + 140\text{w} \]

\[A(\text{w}) = -\text{w}^2 + 140\text{w} \] (quadratic)

b) for what value of \(\text{w} \) is the area the largest?

What is the maximum area?

\[\text{Area is squared units} \]

C) vertex

\(a = -1 \)

\(b = 140 \)

\(c = 0 \)

\[\frac{-b}{2a} \]

\[C = \frac{-140}{2(-1)} \]

\[(x, y) \]

\(x = 70 \text{ yards} \)

\(y = 4900 \text{ yards}^2 \)

\[\text{w} \]

\[A(\text{w}) \]