
§ 3.6 (Cont'd)

(1 and 2) \(P = (x, y) \) is on \(y = \sqrt{x} \)

a) What is the distance from \(P \) to \((1.75, 0) \)?

\[
d = \sqrt{(x-1.75)^2 + (y-0)^2}
\]

\[
d = \sqrt{(x-1.75)^2 + (\sqrt{x}-0)^2}
\]

\[
d = \sqrt{(x-1.75)(x-1.75) + y^2}
\]

b) Variable 1 = \(d \) Variable 2 = \(x \)

\[
d = \sqrt{x^2 - 2.5x + 3.0625}
\]

\[
y = \sqrt{x^2 - 2.5x + 3.0625}
\]

\[
x \quad \rightarrow \quad d
\]

\[
\text{Accept the input, Calculate } \quad \sqrt{x^2 - 2.5x + 3.0625}
\]

\[
\text{Deliver the output}
\]

\[
d(0) = 1.75
\]

\[
d(0) = \sqrt{0^2 - 2.5(0) + 3.0625}
\]

\[
d(0) = 1.75
\]
Oct 3rd, 2016

§ 3 6 (Cont'd)

1 and 2) \(P = (x, y) \) is on \(y = \sqrt{x^3} \)

a) What is the distance from \(P \) to \((1.75, 0)\)?

\[
d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}
\]

\[
d = \sqrt{(1.75 - 0)^2 + (x - 1.75)^2}
\]

\[
d = \sqrt{(x - 1.75)^2 + y^2}
\]

b) \text{Variable 1: } d \quad \text{Variable 2: } X

\[
d = \sqrt{x^2 - 1.75x - 1.75x + 3.0625 + 1x^2}
\]

\[
d = \sqrt{x^2 - 2.5X + 3.0625}
\]

\[
d(X) = \sqrt{x^2 - 2.5X + 3.0625}
\]

\[
X \quad \text{d} \quad \text{Accept the input } X \quad \text{Calculate } \sqrt{x^2 - 2.5X + 3.0625} \quad \text{Deliver the output}
\]

Distance from \(P \) to \((1.75, 0)\):

\[
d = \sqrt{0^2 - 2.5(0) + 3.0625}
\]

\[
d(0) = 1.75
\]
What is d if $x=1$?

\[d(i) = \sqrt{1^2 - 2 \cdot 3(i) + 3.0625} \]

\[d(i) = 1.25 \]

\(d \) → local minimum.
The x-axis represents the x coordinate.

\((1.25, 1.22) \)

Type 2.
Area determined by a point of a function

3 and 4:

\[x \rightarrow \text{point} \rightarrow A \rightarrow \text{Area of the rectangle created by point P and the origin} \]

Express A as a function of x.

a) \[A = xy \]

\[y = 9 - x^2 \]

\[A = x(9 - x^2) \]

\[A(x) = x(9 - x^2) \]

b) Domain of $A = (-\infty, \infty)$

But the instructions provide a limitation.
The x-coord and y-coord of I must be positive, so the domain is: \([0, 3] \)
Window \(x_{\text{min}} = 0 \)
\(y_{\text{max}} = 3 \).

a) Create the graph

d) Maximum: \((1.73, 10.39) \)

\[x\text{-coord} \quad \text{the area of the rectangle} \]
\(pt \ P \) is \(1.73 \) \(\text{(biggest area)} \)