§ 2.5 Variation

- Constructing a model using variation.

- Write the quantity or expression that varies, followed by "= ".

- Write the constant of proportionality, \(k \), multiplied by an empty fraction.

- Write directly \(\rightarrow \) numerator, inversely \(\rightarrow \) denominator, jointly \(\rightarrow \) both in numerator.

1. \(A \) varies directly with \(x^2 \).
 \[
 A = k \cdot \frac{x^2}{1} = kx^2
 \]

2. The square of \(T \) varies directly with the cube of \(a \) and inversely with the square of \(d \).
§ 2.5 Variation

- Constructing a model using variation.

- Write the quantity or expression that varies, followed by "=".

- Write the constant of proportionality, \(k \), mult. by an empty fraction.

- Next write...
 - directly \(\rightarrow \) numerator
 - inversely \(\rightarrow \) denominator
 - jointly \(\rightarrow \) both in numerator

4. \(A \) varies directly with \(x^2 \)

\[
A = k \cdot \frac{x^2}{1}
\]

\[
A = kx^2
\]

8. The square of \(T \) varies directly w/ the cube of \(a \) and inversely w/ the square of \(d \).
(cont'd)

\[T^2 = k \cdot \frac{a^3}{d^2} \rightarrow T^2 = \frac{k}{d^2} \]

\[= T^2 = \frac{K a^3}{d^2} \rightarrow \text{how mml wants it} \]

Write an equation. \(F \) varies jointly w/ \(s \) and \(h \).

\[F = k \cdot \frac{s \cdot h}{d^2} \rightarrow F = ksh \]

Determining the constant of proportionality \("k" \)

Write a general formula.

\(F \) varies inversely with \(d \) squared.

\[F = 24 \text{ when } d = 6 \rightarrow F = \frac{k}{d^2} \rightarrow \text{checkpoint 1} \]

\[F = k \cdot \frac{1}{d^2} \rightarrow 24 = k \cdot \frac{1}{36} \rightarrow 24 = \frac{k}{36} \]

\[24 \cdot (36) = k \cdot \frac{36}{36} \rightarrow \sqrt{864} = k \rightarrow \text{checkpoint 2} \]

\[F = \frac{864}{d^2} \rightarrow \text{Final answer} \]
6. Write a general formula to describe the variation:

Z varies directly with the sum of the squares of x and y.

\[Z = k \cdot \frac{x^2 + y^2}{1} \]

(Side note: \(x^2 + y^2 \) is not equal to \((xy)^2\))

\[Z = k (x^2 + y^2) \]

\[Z_1 = \frac{1}{13} (x^2 + y^2) \]

\[Z_1 = 4 \]

\[x = 4 \]

\[y = 6 \]

\[4 = k (4^2 + 6^2) \]

\[4 = k (16 + 36) \]

\[4 = k (52) \]

\[\frac{4}{52} = \frac{1}{13} \]

\[k = \frac{1}{13} \]

↑ Final Answer