Functions

Relation - A correspondence between two sets. The first set is the domain, the second set is the range. If \(x \) belongs to the domain and \(y \) belongs to the range, and there is a relation between \(x \) and \(y \), we say that \(y \) depends on \(x \), or \(x \) corresponds to \(y \).

Representing relations
- equations, graphs, mapping, ordered pairs.

Function - A relation that associates each element \(x \) of the domain with exactly one element \(y \) of the range.

Domain - The set of all inputs \(x \), independent variable, the argument.
Range - The set of all outputs \(y \), dependent variable, the image of \(x \).

Function = Predictable correspondence; each given input will produce a unique output.

A relation is a function if:
- The first element in the set of ordered pairs does not repeat.
- There are no multiple arrows leaving the same input.
- Solving the equation for \(y \) will only return one solution.
- The vertical line test: A vertical line will intersect the graph in no more than one point.
Function Notation

We rewrite the equation using a symbolic notation $f(\, x\,)$.
$y = f(x)$ will read "f of x" or "f at x".
$f(x)$ is the value of f at the number x.

Practice

Determine whether the relations below are functions:

1. $R = \{(1,3), (2,5), (-1,5), (1,7)\}$

2. Make a table for the given values:

<table>
<thead>
<tr>
<th>Car</th>
<th>MPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda Accord</td>
<td>31</td>
</tr>
<tr>
<td>Toyota Camry</td>
<td>29</td>
</tr>
<tr>
<td>Kia Optima</td>
<td>35</td>
</tr>
</tbody>
</table>

3. Graph the function:

\[y = _x \]
Function Values

Ex. 1 Let \(f(x) = 4x^2 - 5 \). Evaluate the following:

\[
\begin{align*}
\hat{f}(3) &= 7 \\
\hat{f}(-4) &= 7 \\
\hat{f}(\frac{1}{2}) &= 7
\end{align*}
\]

Solution:

\[
\begin{align*}
\hat{f}(3) &= 4 \cdot 3^2 - 5 = 36 - 5 = 31 \\
\hat{f}(-4) &= 4 \cdot (-4)^2 - 5 = 64 - 5 = 59 \\
\hat{f}(\frac{1}{2}) &= 4 \cdot \left(\frac{1}{2}\right)^2 - 5 = 4 \cdot \frac{1}{4} - 5 \\
&= 1 - 5 = -4
\end{align*}
\]

Ex. 2 Let \(f(x) = \frac{3}{x-5} \).

Evaluate \(f(2) \), \(f(0) \), and \(f(5) \).

\[
\begin{align*}
\hat{f}(2) &= \frac{3}{2-5} = \frac{3}{-3} = -1 \\
\hat{f}(0) &= \frac{3}{0-5} = -\frac{3}{5} \\
\hat{f}(5) &= \frac{3}{5-5} = \frac{3}{0} \text{ undefined}
\end{align*}
\]