7.4 Section Continuous Income Streams

Formula: Total Value = \(\int_{a}^{b} R(t) \, dt \)

Example #4

\(R(t) = 300 + 4.5t - 0.05t^2 \)

Step 1

\(TV = \int_{0}^{92} (300 + 4.5t - 0.05t^2) \, dt \)

\(\uparrow \)

\(\text{bc}(0 \leq t \leq 92) \)

Step 2

Is downward parabola \(-0.05t^2 \)

Step 3

Put in calculator to solve

\(= \$33,466.66 \) income for shop during open months
Present Value / Future Value

Future Value Formula:
\[FV = \int_{a}^{b} R(t)e^{r(b-t)} \, dt \]

*How much money will be in account @ end of certain time. (@ time \(t=b \))

\(r = \) rate
\(t = \) variable
\(R(t) = \) Revenue
\(b = \) ending days
\(a = \) starting day

Ex #5: \(R(t) = 300 + 4.5t - 0.05t^2 \) \((0 \leq t \leq 92) \)

\(r = 5\% = 0.05 \)
\(a = 0 \) \(b = 92 \)

Plug into formula:
\[\int_{0}^{92} (300 + 4.5t - 0.05t^2)e^{0.05(92-t)} \, dt \]

*Plug into calculator = $33,880.00
Ending amount
Present Value \((t=a) \) * how much is it worth now?

Formula: \[PV = \int_{a}^{b} R(t)e^{r(a-t)} \, dt \]

*Previous page states what variables mean

\[PV = \int_{0}^{92} (300 + 4.5t - 0.05t^2)e^{0.05(0-t)} \, dt \]

Plug into calculator and find \(PV = \)

b/c 5% APR is annual, we need to convert to days, so \(\frac{0.05}{365} \) days

* I.e. If time is in days & interest rate in years you have to adjust to match.