Part 2 4.6 Section: Logarithmic Differentiation

Uses properties of logarithms.
I.e. \(\ln(xy) = \ln(x) + \ln(y) \)
\[\ln \frac{x}{y} = \ln(x) - \ln(y) \]
\[\ln x^4 = 4 \cdot \ln x \]

3 Rules that help make derivatives easier to find.

\(\#44 \)

\(y = (3x+2)(8x-5) \)

Step 1 Take log of both sides, so

\(\ln y = \ln((3x+2)(8x-5)) \)

Step 2 Use rules above to get addition problem, so \(\ln\text{ its multiplication use } \ln x + \ln y \)

Thus \(\ln y = \ln(3x+2) + \ln(8x-5) \)

Step 3 Find derivatives

\[\frac{1}{y} \cdot y' = \frac{1}{3x+2} \cdot 3 + \frac{1}{8x-5} \cdot 8 \]

Step 4 Simplify:

\[y' = \left(\frac{3}{3x+2} + \frac{8}{8x-5} \right) y \]

With logarithmic this would be final answer.

Re-do by plugging in \(y' \) into equation.

so

\[y' = \left(\frac{3}{3x+2} + \frac{8}{8x-5} \right)(3x+2)(8x-5) \]
\[= 3(8x-5) + 8(3x+2) \]
\[= 24x - 15 + 24x + 16 \]
\[= 48x + 1 \]
Algebraically working it out:

\[y = (3x + 2)(8x - 5) \]

\[\text{FOIL} \quad y = 24x^2 - 15x + 16x - 10 \]

\[y = 24x^2 + x - 10 \]

Now find \(y' \) by simplifying:

\[y' = 48x + 1 \]

*Use this to recheck/verify previous answer.

Example:

\[y = \frac{(2x - 1)^{18} (6x - 3)^{12} (5x + 1)^3}{(2x - 3)^{14} (4x + 3)^6} \]

Step 1:

External power - Get rid of it by multiplying it by internal powers, so

\[y = \frac{(2x - 1)^{36} (6x - 3)^{24} (5x + 1)^6}{(2x - 3)^{34} (4x + 3)^{12}} \]

Step 2:

Get powers down by using \(\ln \), so

\[\ln y = \ln \left(\frac{(2x - 1)^{36} (6x - 3)^{24} (5x + 1)^6}{(2x - 3)^{34} (4x + 3)^{12}} \right) \]

Step 3:

Use \(\ln x + \ln y + \ln x - \ln y \) rules, so

\[\ln y = 36 \ln (2x - 1) + 24 \ln (6x - 3) + 6 \ln (5x + 1) - 34 \ln (2x - 3) - 12 \ln (4x + 3) \]

Step 4:

Take derivative of each 5 pieces individually

\[\frac{1}{y} \cdot y' = 36 \cdot \frac{1}{2x - 1} + 24 \cdot \frac{6}{6x - 3} + 6 \cdot \frac{5}{5x + 1} - 34 \cdot \frac{2}{2x - 3} - 12 \cdot \frac{4}{4x + 3} \]

Simplified:

\[y' = \left(\frac{36}{2x - 1} + \frac{144}{6x - 3} + \frac{30}{5x + 1} \right) \cdot \frac{1}{y} \]

Step 5:

Multiply by \(y' \) to get

\[y^2 \]

So

\[y^2 = \left(\frac{72}{2x - 1} + \frac{144}{6x - 3} + \frac{30}{5x + 1} \right) \cdot \left(\frac{144}{6x - 3} + \frac{30}{5x + 1} \right) \cdot \frac{1}{y} \]