13. \[y = \ln x + \sqrt{\ln x} \]

Step 1:

\[y = \ln x + (\ln x)^{\frac{1}{2}} \quad \text{Algebra Simplify} \]

Step 2:

\[y' = \frac{1}{x} + \frac{1}{2}(\ln x)^{-\frac{1}{2}} \cdot \frac{1}{x} \]

Step 3: Algebra clean up!

\[
\frac{1}{x} - \frac{1}{2\sqrt{\ln x}} \quad \text{or} \quad \frac{1}{x}\left(2 + \frac{1}{\sqrt{\ln x}} \right)
\]

get 2 out of bottom

Then,

\[
\frac{1}{x}\left(\frac{2}{2} + \frac{1}{2\sqrt{\ln x}}\right)
\]

\[
= \frac{1}{2x} \left(2 + \frac{1}{\sqrt{\ln x}}\right)
\]

\[
\frac{1}{x} + \frac{1}{2x\sqrt{\ln x}} \quad \text{or}
\]
#14. \(xy + x = 9 \)

Because not \((y =)\) means this is implicit.

Step 1. Look at parts

- 1st piece + 2nd piece = 3rd piece

 \(\begin{align*}
 \text{Product rule} \\
 f &= x \\
 g &= y
 \end{align*} \)

- 1st piece + 2nd piece = 3rd piece

 \(\begin{align*}
 f' &= 1 \\
 g' &= y^2
 \end{align*} \)

- \(f'g + g'f = 1 \cdot y + x \cdot y^2 \)

- \(= y + xy^2 + 1 = 9 \)

Step 2. Circle \(y^2 \)

- \(y + xy^2 + 1 = 9 \)

Step 3. Get \(y^2 \) by itself

- \(xy^2 = -y - 1 \)

Step 4. Recombine pieces

- \(\frac{xy^2}{x} = \frac{-y - 1}{x} \)

Step 5. Can manipulate

- \(y + 1 \)

Step 6. Final answer

- \(y' = \frac{-y - 1}{x} \)
\[(y+1)^4 = (x-1)^3\]

Step 1: Not \((y=)\) so we know it's implicit.

Step 2: Both are power pieces.

1st piece:
\[(y+1)^4 = (x-1)^3\]

2nd piece:
\[4(y+1)^3 = 3(x-1)^2\]

Step 4: Inside derivative \((y+1)\) = \(y^3\)

\[(x-1) = 1\] (Inside derivative)

Step 5:
\[4(y+1)^3 \cdot y^3 = 3(x-1)^2\]

Step 6: Combine pieces
\[\frac{y^3}{4(y+1)^3} = \frac{3(x-1)^2}{4(y+1)^3}\]

\[y' = \frac{3(x-1)^2}{4(y+1)^3}\]