2.5 - Variation

- y varies directly as \(x \Rightarrow y = kx \)
- y varies inversely as \(x \Rightarrow y = \frac{k}{x} \)
- y varies jointly as \(x \) and \(z \Rightarrow y = k \cdot x \cdot z \)

Making a model, and then using it to project or predict things.

\[\text{Procedure} \]

1. Set up the equation with constant \(k \).
2. Use appropriate data to find \(k \) (initial condition).
3. Rewrite the equation, replacing \(k \) with its new value.
4. Find the requested information. \{Try making your own procedure so as \(\text{not to miss any steps!} \) \}

4. \(V \) varies directly with \(t \). \(V = 16 \) when \(t = 2 \).

\[\Rightarrow y = kx \Rightarrow V = kt \] \(\text{we need to find } k \text{ so what do we need? In this case, } V \text{ and } t, \text{ so I can solve} \)

\[16 = k(2) \Rightarrow 8 = k \] \(\text{for the last missing thing!} \)

\[V = 8t \]
8) \(y \) varies inversely with \(\sqrt{x} \). \(y = 11 \) when \(x = 9 \).
\[y = \frac{k}{x} \quad \rightarrow \quad y = \frac{k}{\sqrt{x}} \]
\[4 = \frac{k}{4} \quad \rightarrow \quad 4 = \frac{k}{3} \quad \rightarrow \quad 12 = k \]
\[\text{Rewrite: } y = \frac{12}{\sqrt{x}} \]

10) \(T \) varies jointly as \(\sqrt{x} \) and \(d^2 \).
\[T = 18 \quad \text{when} \quad x = 8 \quad \text{and} \quad d = 3. \]
\[y = k \cdot x \cdot d^2 \quad \rightarrow \quad T = k \cdot \sqrt{x} \cdot d^2 \]
\[18 = k \cdot 3 \cdot 3 \quad \Rightarrow \quad 18 = k \cdot 18 \quad \Rightarrow \quad k = 1 \]
\[T = 3 \sqrt{x} \cdot d^2 \]

Information:
- Current = \(i \) amperes
- Resistance = \(Z \) ohms
\[y = \frac{k}{x} \]
- Current is inversely proportional to resistance
\[i = \frac{k}{z} \quad ; \quad i = 30 \quad ; \quad z = 8 \]
\[30 = \frac{k}{8} \quad \Rightarrow \quad 240 = k \]
\[i = \frac{240}{z} \quad \Rightarrow \quad i = \frac{240}{10} = 24 \text{ amperes} \]