MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the average rate of change for the function over the given interval.
1) \(y = x^2 + 2x \) between \(x = 2 \) and \(x = 6 \)
 - A) 8
 - B) 12
 - C) \(\frac{20}{3} \)
 - D) 10

2) \(y = \sqrt{2x} \) between \(x = 2 \) and \(x = 8 \)
 - A) 7
 - B) \(-\frac{3}{10}\)
 - C) \(\frac{1}{3} \)
 - D) 2

3) \(y = 4x^2 \) between \(x = 0 \) to \(x = \frac{7}{4} \)
 - A) \(-\frac{3}{10}\)
 - B) 2
 - C) \(\frac{1}{3} \)
 - D) 7

4) \(y = x^3 + x^2 - 8x - 7 \) between \(x = 0 \) and \(x = 2 \)
 - A) \(-\frac{1}{6}\)
 - B) \(\frac{1}{2} \)
 - C) -28
 - D) -2

5) \(y = \frac{3}{x + 2} \) between \(x = 1 \) and \(x = 4 \)
 - A) -2
 - B) -28
 - C) \(-\frac{1}{6}\)
 - D) \(\frac{1}{2} \)

Suppose the position of an object moving in a straight line is given by the specified function. Find the instantaneous velocity at time \(t \).
6) \(s(t) = t^2 + 3t + 1 \), \(t = 5 \)
 - A) 41
 - B) 11
 - C) 25
 - D) 13

7) \(s(t) = 5t^2 - 8t - 1 \), \(t = 2 \)
 - A) 11
 - B) 2
 - C) 3
 - D) 12

8) \(s(t) = t^3 + 4t + 6 \), \(t = 1 \)
 - A) 13
 - B) 6
 - C) 7
 - D) 11

Find the instantaneous rate of change for the function at the given value.
9) \(F(x) = x^2 + 8x \) at \(x = 5 \)
 - A) 18
 - B) 13
 - C) 10
 - D) 65

10) \(s(t) = t^2 + 5t \) at \(t = 4 \)
 - A) 13
 - B) 9
 - C) 21
 - D) 3
11) $F(x) = 2x^2 + x - 3$ at $x = 4$
 A) 15 B) 17 C) 5 D) 19

12) $s(t) = 3t^2 + 5t - 7$ at $t = -2$
 A) -1 B) 1 C) -17 D) -7

Solve the problem.

13) A particular strain of influenza is known to spread according to the function $p(t) = \frac{1}{2}(t^2 + t)$, where t is the number of days after the first appearance of the strain and $p(t)$ is the percentage of the population that is infected. Find the instantaneous rate of change of p with respect to t at $t = 3$.
 A) 6% per day B) $\frac{7}{2}$% per day C) 3% per day D) 4% per day

14) The graph shows the population in millions of bacteria t minutes after a bactericide is introduced into a culture. Find the average rate of change of population with respect to time for the time from 1 to 4 minutes.

 A) 3 B) $\frac{1}{3}$ C) 4 D) $\frac{1}{4}$

15) The size of a population of mice after t months is $P = 100(1 + 0.2t + 0.02t^2)$. Find the growth rate at $t = 18$ months.
 A) 46 mice/month B) 92 mice/month
 C) 192 mice/month D) 184 mice/month
Estimate the slope of the tangent line to the curve at the given point.

16) A) 2
 B) 1
 C) $\frac{1}{2}$
 D) -1

17) A) $-\frac{1}{2}$
 B) -1
 C) $-\frac{3}{2}$
 D) 1
Find f'(x) at the given value of x.

19) \(f(x) = \sqrt{x} \); Find \(f'(81) \).
 A) 81 B) \(\frac{1}{18} \) C) \(\frac{1}{9} \) D) 9

20) \(f(x) = \sqrt{x + 6} \); Find \(f'(10) \).
 A) \(\frac{5\sqrt{5}}{8} \) B) \(\frac{1}{8} \) C) \(\frac{\sqrt{5}}{8} \) D) \(\frac{5}{8} \)

21) \(f(x) = x^2 - 9x - 3 \); Find \(f'(-1) \).
 A) 7 B) -11 C) -2 D) -14

22) \(f(x) = -6x^2 + 4x + 5 \); Find \(f'(7) \).
 A) -56 B) 88 C) -75 D) -80

23) \(f(x) = -9x^2 + 6x \); Find \(f'(6) \).
 A) -102 B) -87 C) -72 D) -108

Find the equation of the secant line through the points where x has the given values.

24) \(f(x) = x^2 + 2x \); \(x = 4, x = 6 \)
 A) \(y = 12x \) B) \(y = 24x - 12 \) C) \(y = 12x - 24 \) D) \(y = 12x + 24 \)

25) \(f(x) = \frac{3}{x} \); \(x = 3, x = 6 \)
 A) \(y = \frac{1}{6}x - \frac{3}{2} \) B) \(y = -\frac{3}{x^2} \) C) \(y = -\frac{1}{6}x + \frac{3}{2} \) D) \(y = -\frac{1}{6}x \)

Find the equation of the tangent line to the curve when x has the given value.

26) \(f(x) = -4 - x^2 \); \(x = 4 \)
 A) \(y = 4x + 12 \) B) \(y = -2x \) C) \(y = 8x - 12 \) D) \(y = -8x + 12 \)
27) \(f(x) = \frac{x^2}{2} ; x = 5 \)

A) \(y = 5x - 25 \)
B) \(y = 5x - 12.5 \)
C) \(y = 10x - 12.5 \)
D) \(y = 5x + 12.5 \)

28) \(f(x) = \frac{x^3}{4} ; x = -4 \)

A) \(y = 12x + 32 \)
B) \(y = 32x + 4 \)
C) \(y = 32x + 12 \)
D) \(y = 4x + 32 \)

29) \(f(x) = \frac{18}{x} ; x = 3 \)

A) \(y = -2x \)
B) \(y = -4x + 18 \)
C) \(y = -2x + 12 \)
D) \(y = -2x + 6 \)

30) \(f(x) = x^2 + 3 ; x = -2 \)

A) \(y = -4x - 2 \)
B) \(y = -4x - 5 \)
C) \(y = -2x - 1 \)
D) \(y = -4x - 1 \)

Find the \(x \)-values where the function does not have a derivative.

31)

A) \(x = 1 \)
B) \(x = 2 \)
C) \(x = 0 \)
D) \(x = -1 \)

32)

A) \(x = 2 \)
C) \(x = -2, x = 2 \)
B) \(x = -2, x = 0, x = 2 \)
D) \(x = 0 \)

33)

A) \(x = 1, x = 3 \)
C) \(x = 1, x = 2, x = 3 \)
B) \(x = 2 \)
D) Exists at all points
34)
A) $x = -1, x = 1$
B) $x = 0$
C) $x = -1, x = 0, x = 1$
D) Exists at all points

35)
A) $x = 3$
B) $x = 0$
C) $x = 0, x = 3$
D) Exists at all points

The graphs of a function $f(x)$ and its derivative $f'(x)$ are shown below. Decide which is the graph of $f(x)$ and which is the graph of $f'(x)$.

36)
A) Either graph could be the derivative of the other.
B) $f(x)$ is the solid line; $f'(x)$ is the dashed line.
C) Neither graph could be the derivative of the other.
D) $f(x)$ is the dashed line; $f'(x)$ is the solid line.
A) Neither graph could be the derivative of the other.
B) f(x) is the solid line; f'(x) is the dashed line.
C) f(x) is the dashed line; f'(x) is the solid line.
D) Either graph could be the derivative of the other.
Sketch the derivative of the graph.

38)
Use the formula \(f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} \) to find the derivative of the function.

41) \(f(x) = \frac{3}{x+2} \)
A) \(-\frac{3}{(x+2)}\) B) \(-\frac{3}{(x+2)^2}\) C) \(-\frac{3}{x^2}\) D) \(\frac{3}{(x+2)^2}\)

42) \(f(x) = 2x^2 - 3x + 5 \)
A) \(4x^2 - 3x\) B) \(4x\) C) \(2x - 3\) D) \(4x - 3\)
43) \(g(x) = \frac{x}{x + 4} \)

A) \(-\frac{4}{(x + 4)^2}\) B) \(\frac{4}{(x + 4)^2}\) C) \(\frac{x}{(x + 4)^2}\) D) \(\frac{x^2}{x + 4}\)

44) \(g(x) = 3x + \sqrt{x} \)

A) \(\frac{1}{2\sqrt{x}}\) B) \(3 + \frac{1}{\sqrt{x}}\) C) \(3 + \frac{1}{2\sqrt{x}}\) D) \(3 - \frac{1}{2\sqrt{x}}\)
1) D
2) C
3) D
4) D
5) C
6) D
7) D
8) C
9) A
10) A
11) B
12) D
13) B
14) B
15) B
16) C
17) B
18) C
19) B
20) B
21) B
22) D
23) A
24) C
25) C
26) D
27) B
28) A
29) C
30) D
31) C
32) D
33) D
34) B
35) C
36) B
37) C
38) B
39) A
40) C
41) B
42) D
43) B
44) C